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The dynamics of two-component solitary waves in hydrogen-bonded chains in an ex-
ternal force and damping is investigated. The influence of the motion and the optical
mode of the heavy ion sublattice on the portion sublattice is discussed. It will increase
the soliton width and decrease the soliton mobility. The general expression for the kink
soliton soliton is obtained. The velocity, the mobility and conductivity of the kink soliton
are calculated. The results are in good agreement with the experimental data.

KEY WORDS: two-component solitary waves; optical mode; hydrogen-bonded chain.

1. INTRODUCTION

There is a large number of hydrogen-bonded condensed matter, organic and
biological systems that are characterized by the formation of hydrogen-bonded
molecular chains. The motion of the proton plays an important role in the phase
transition of hydrogen bonded ferroelectrics and the conductivity of ice. Proton
conductivity in hydrogen-bonded substances has attracted attention because of the
observed protonic conductivity along the chain being about 103–104 times larger
than that in the perpendicular direction (Gorden, 1987; Pang and Muller-Kirsten,
2000). The one-component soliton model for proton transport in a hydrogen-
bonded chain in the presence of a constant external force is investigated by Gordon
(1987). Considering the influence of motion of the heavy-ion sublattice on the
proton sublattice, the two-component soliton model was suggested by a number of
authors (Cheng, 2000; Xu and Huang, 1995). However, the heavy-ion sublattice
is not an ideal simplex atomic lattice. The heavy ion has an internal vibration,
as, e.g. the amide-I vibration in the peptide group ofα-helical protein (Xu, 2000).
Therefore, in this paper, we discuss the influence of the motion and the optical mode
of the heavy-ion sublattice on the proton sublattice, in the presence of an external
force and damping, based on the two-component soliton model. In Section 2 we
present the model Hamiltonian and derive the equations of motion of the system.
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In Section 3 we give the corresponding soliton solution. In Section 4 we investigate
soliton velocity and conductivity. Finally in Section 5, we discuss the results and
conclusions.

2. MODEL AND EQUATION OF MOTION

We assume that the coupling between the proton sublattice and the heave-ion
sublattice is nonlinear in the model of the two-component soliton of hydrogen-
bonded chains. The Hamiltonian of the system may be written as a sum of three
terms

H = Hp+ Hh+ Hint (1)

where

Hp =
∑

j

{
1

2
m1
[
u̇2

i + ω2
1(ui+1− u j )

2
]+ V(ui )

}
(2)

is the Hamiltonian of the proton sublattice,m1 is the mass of the proton,ω1 is the
characteristic frequency of the proton sublattice and

V(ui ) = − A

2
u2

i +
B

4
u4

i (3)

is the proton anharmonic potential in each hydrogen bond, and coefficientsA,
B > 0.

Hh in the Eq. (1) is the Hamiltonian of the heavy-ion sublattice.

Hh =
∑

i

1

2
m2
[
η̇2

i + ω2
2(ηi+1− ηi )

2+Ä2
oη

2
i

]
(4)

wherem2 is the mass of heavy ionω2 is the characteristic frequency of the heavy
ions sublattice, andÄo is the frequency of the optical mode of the heavy-ion
sublattice (Peyrardet al., 1987).

Hint in the Eq. (1) is the Hamiltonian of the proton–ion interaction.

Hint =
∑

i

χ

u2
o

ηi
(
u2

i − u2
o

)
(5)

whereχ is coupling constant between the proton and the heavy sublattice.
In the continuum approximation model, the Hamiltonian can be written as

(Cheng, 2003; Davydov, 1991).
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H = 1

l

∫ [
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oη

2
x +Ä2

oη
2
)

+V(u)+ k

u2
o

η
(
u2− u2

o

)]
dx (6)

where

V(u) = − A

2
u2+ B

4
u4 (7)

Here,u(x, t) andη(x, t) are the displacement fields of the proton (massm1) and
the heavy ion (massm2), respectively.l is the lattice spacing,Co = ω1l and
υo = ω2l are the characteristic velocities of the proton and the heavy-ion sub-
lattices, respectively.k = χ l 2 is the coupling constant between the two sublat-
tices. The Lagrange density of the system corresponding to Eq. (6) can be written
as

L = T −U = 1

2
m1u2

t +
1

2
m2η

2
t −

1

2
m1c2

ou2
x −

1

2
m2υ

2
oη

2
x

− 1

2
m2Ä

2
oη

2− V(u)− k

u2
o

η
(
u2− u2

o

)
(8)

The Euler–Lagrange equations of motion from (6) and (8) are

utt − c2
ouxx + 2k

m1u2
o

ηu+ 1

m1

dV(u)

du
= 0 (9)

ηt t − υ2
oηxx + k

m2u2
o

(
u2− u2

o

)+Ä2
oη = 0 (10)

3. SOLITON SOLUTION

In the presence of external force and damping, because of the fact that response
of the heavy ions to the force and damping are very much less than for the protons,
the force and the damping terms are only introduced in the equation of motion for
the protons [6]. The equations of motion (9) and (10) are replaced by the following
equations.

utt − c2
ouxx + 2k

m1u2
o

ηu+ 01
∂u

∂t
+ 1

m1

dV(u)

du
= F (11)

ηt t − υ2
oηxx + k

m2u2
o

(
u2− u2

o

)+Ä2
oη = 0 (12)

where01 is the damping coefficient for the proton andF is the external force on
the proton.
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The partial differential Eqs. (11) and (12) in the independent variablesx
and t can be reduced to ordinary differential equations in the variableξ by the
substitution.

ξ = x − υt (13)

whereυ is the velocity of the moving frame, after the transformation (13), Eq. (12)
can be written as

υ2ηξξ − υ2
oηξξ +

k

m2u2
o

(
u2− u2

o

)+Ä2
oη = 0

whenυ = υo, we get

η = −k
(
u2− u2

o

)
m2u2

oÄ
2
o

(14)

Equation (11) becomes

υ2
ouξξ − c2

ouξξ + 2k

m1u2
o

ηu− 01υouξ + 1

m1

dV(u)

du
= F (15)

Substituting Eq. (14) into Eq. (15), we obtain(
υ2

o − c2
o

)
uξξ − 01υouξ −

(
A

m1
− 2k2

m1m2u2
oÄ

2
o

)
u

+
(

B

m1
− 2k2

m1m2u4
oÄ

2
o

)
u3− e∗E

m1
= 0 (16)

Wheree∗ is the effective charge of the soliton,E is the external electric field.
Usually,υ2

o ¿ c2
o, we have

−c2
ouξξ − λuξ − γu+ gu3− e∗E

m1
= 0 (17)

Here

λ = 01υo, γ = A

m1
− 2k2

m1m2u2
oÄ

2
o

, g = B

m1
− 2k2

m1m2u4
oÄ

2
o

(18)

Using the phase-plane method (Garden, 1987) we shall obtain the kink solu-
tion, For this reason we introduce the following notation:

du

dξ
= ρ (19)

Equation (17) can be written as

c2
oρξ + λρ − g(u− u1)(u− u2)(u− u3) = 0 (20)
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where

u1 = 2

(
γ

3g

)1/2

cos

{
1

3
arccos

[
3e∗E
2m1γ

(
3g

γ

)1/2
]}

(21)
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(
γ
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cos
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3
− 1

3
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(
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u3 = −2

(
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3g

)1/2

cos

{
π

3
+ 1

3
arccos

[
3e∗E
2m1γ

(
3g

γ
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(23)

are the roots of the equation.
Therefore the kink-type solution which we seek corresponds to a trajectory

in the (ρ , u) phase Plane of the system of Eqs. (19) and (20). From (19) and (20)
we obtain a differential equation for solution trajectory as

c2
oρ
∂ρ

du
+ λρ − g(u− u1)(u− u2)(u− u3) = 0 (24)

Equation (24) can be satisfied by a trajectory of the form

ρ = ρo(u− u1)(u− u2) (25)

Inserting Eq. (25) into (24), we have

ρo = 1

co

√
g

2
= 1√

2co

(
B

m1
− 2k2

m1m2u4
oÄ

2
o

)1/2

(26)

The substituting Eq. (25) into (19) and integrating (19), we get kink soliton
solution

u = u2+ (u1− u2)(1− eξ/Wk )−1 (27)

HereWk is the width of the soliton

Wk = 1

ρo(u1− u2)
=
√

2co

u1− u2

(
B

m1
− 2k2

m1m2u4
oÄ

2
o

)−1/2

(28)

we see that the width of the soliton increase as interaction between the two sublat-
tices and the influence of the optical mode of the heavy-ion sublattice, The kink
soliton describes ion-type nonlinear defect because the charge density depends
directly on δe = (− ∂u

∂x ) (Xu and Huang, 1995) Eq. (27) show that the motion
of this kink describes the propagation of the charge, According to the theory of
charge transport by solitons (Xu, 1993), the kink defect can capture and carry the
electron, i.e., it transports charge and energy along hydrogen-bonded molecular
chains.
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4. VELOCITY AND CONDUCTIVITY

The substitution of (25) into (24) gives kink soliton velocity along hydrogen
bonded molecular chains

υo = 3co

01

√
g

2
u3 = co

01
(6γ )1/2 cos

{
π

3
+ 1

3
arccos

[
3e∗E
2m1γ

(
3g

γ

)1/2
]}

(29)

From (29) we obtain soliton velocity for a small external applied electric field

E ¿ 2m1γ

3e∗

(
γ

3g

)1/2

, υo = 3coe∗E
m1γ01

(
g

2

)1/2

= 3coe∗E

01

(
A− 2k2

m2u2
oÄ

2
o

) ( B

2m1
− k2

m1m2u4
oÄ

2
o

)1/2

(30)

If we define the mobility of the kink soliton as

υo = µE (31)

whereυo is qiven by (30), the mobility of the kink soliton is equal to

µ = 3coe∗

01

(
A− 2k2

m2u2
oÄ

2
o

) ( B

2m1
− k2

m1m2u4
oÄ

2
o

)1/2

(32)

This equation imply that influence of the coupling between two sublattices
and optical mode of the heavy-ion sublattice is to reduce the mobility, whenk = 0,
Eq. (32) becomes mobility of soliton in one-component mode (Gorden, 1987).

If the densityN of the kink soliton is small enough to neglect kink–kink
interactions, Then we obtain the expression for the conductivity.

σ = Ne∗µ = 3Ncoe∗2

01

(
A− 2k2

m2u2
oÄ

2
o

) ( B

2m1
− k2

m1m2u4
oÄ

2
o

)1/2

(33)

We have chosen the following set of model parameters in ice at−10◦C (Gorden,
1987; Xu, 1996),01 = 6× 1013 s−1, Äo = 600 cm−1, co = 1.1× 106 cm s−1,
m2 = 17 m1, k = 0.1 eVÅ−1, A = 4.92× 105 gs−2, B = 14.6× 1023 gcm−2 s−2,
N = 8× 1010 cm−3, uo = 0.183 Å. Taking e∗ = 1.2 e, here e is the protonic
charge. The calculations according to Eqs. (32) and 33 giveµ = 4.5× 10−2 cm2

V−1 s−1 andσ = 6.9× 10−10Ä−1 cm−1. These values are close to observed one
σ = 6.6× 10−10Ä−1 cm−1 (Geicke, 1984).
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5. DISCUSSION AND CONCLUSIONS

Finally, we discuss the following two problems:

1. In the preceding discussion, approximation condition is written as

E

/
2m1γ

3e∗

(
γ

3g

)1/2

¿ 1 (34)

We use the date for ice and obtain

2m1γ

3e∗

(
γ

3g

)1/2

= 1.9× 108 V cm−1 (35)

Taking Emax= 180 KV cm−1, we get

Emax

/
2m1r

3e∗

(
γ

3g

)1/2

= 0.94× 10−3¿ 1 (36)

This shows that the Eq. (34) usually can be satisfied.
2. Now we can check the above-mentioned approximation:

υ2
o/c

2
o ¿ 1 (37)

From the data for ice and takingE = 180× 103 V cm−1, we have

υ2
o

/
c2

o = υ2
max

/
c2

o =
[

3e∗E
m1γ01

(
B

2m1

)1/2
]2

= 0.57× 10−4¿ 1 (38)

Therefore, the Eq. (37) can easily be satisfied.

In conclusion, we have studied influence of the motion and the optical mode
of the heavy ion sublattice on the proton sublattice in hydrogen-bonded chains in
presence of an external force and damping, based on the two-component soliton
model, and show that it will increase the width of the soliton and decrease the
mobility. The solutions of the kink soliton is obtained. The velocity, the mobility
and the conductivity of the kink soliton are calculated. The calculated conductivity
is in satisfactory agreement with the experiment.
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